Exercise 47

Suppose f and g are continuous functions such that $g(2)=6$ and $\lim _{x \rightarrow 2}[3 f(x)+f(x) g(x)]=36$. Find $f(2)$.

Solution

The fact that f and g are continuous allows us to write

$$
\lim _{x \rightarrow 2} f(x)=f(2) \quad \text { and } \quad \lim _{x \rightarrow 2} g(x)=g(2),
$$

which means

$$
\begin{aligned}
36 & =\lim _{x \rightarrow 2}[3 f(x)+f(x) g(x)] \\
& =\lim _{x \rightarrow 2} 3 f(x)+\lim _{x \rightarrow 2} f(x) g(x) \\
& =3\left[\lim _{x \rightarrow 2} f(x)\right]+\left[\lim _{x \rightarrow 2} f(x)\right]\left[\lim _{x \rightarrow 2} g(x)\right] \\
& =3 f(2)+f(2) g(2) \\
& =3 f(2)+f(2)(6) \\
& =(3+6) f(2) \\
& =9 f(2) .
\end{aligned}
$$

Therefore, dividing both sides by 9 ,

$$
f(2)=4 .
$$

